Limit on neutrinoless double beta decay of ⁷⁶Ge by the GERDA experiment

Bernhard Schwingenheuer (Max-Planck-Institut Kernphysik, Heidelberg) for the collaboration TAUP 2013, Asilomar (CA, USA)

The collaboration

GERDA

Introduction

GERDA searches for $0\nu\beta\beta$ decay ⁷⁶Ge \rightarrow ⁷⁶Se + 2 e⁻¹

detector = Ge diode = source

⁷⁶Ge enriched to ~86%

Energy resolution FWHM~0.2% @ $Q_{\beta\beta}$

9 semi-coaxial detectors: ANG1-5 Heidelberg-Moscow RG1-3 IGEX experiment GTF112 natural Ge (all reprocessed at Canberra)

5 BEGe detectors: GD32B-35C new, inserted later

ANG1, RG3, GD35C not used in analysis, remaining = 17.6 kg enriched det.

- idea Gerd Heusser 1995
- GERDA proposal 2004
- construction 2006-2010
- commissioning 2010-11
- physics data Phase I 2011-13

Calibration & data processing

Processing: diode → amplifier → FADC → digital filter → energy, rise time, pulse shape, ...

Selection: anti-coincidence muon / 2nd Ge (~20% rejected @ $Q_{\beta\beta}$), quality cuts (~9% rej.), pulse shape discrimination (~50% rej.)

Calibration: ²²⁸Th (bi)weekly & pulser every 20 seconds for short term drifts

peak pos. within 0.3 keV at correct position FWHM ~ 4% larger than expected from calibration data

Physics spectrum

GERDA result

blind analysis: evt in $Q_{\beta\beta}$ ± 20 keV not reconst. until calibr. + cuts fixed

Phase I data split into 3 sets

- "golden coax" = 17.9 kg yr all semi-coax data but 4 weeks
- "silver coax" = 1.3 kg yr4 weeks when BEGe inserted
- "BEGe" = 2.4 kg yr

background level:

	GERDA	HdM[1]
2615 keV [cts/(kg yr)]	1.1±0.3	16.5±0.5
1764 keV [cts/(kg yr)]	3.3±0.5	30.7±0.7
avg @ Q _{ββ} [cts/(kev kg yr)]	0.018± 0.002 ¹	0.16± 0.005 ²

- ¹ "golden coax", 1930-2190 keV, no PSD
- ² Heidelberg-Moscow 1995-2003 data, 2-2.1 MeV, no PSD

[1] Oleg Chkvorets, PhD thesis, NIM A522 (2004) 371.

Background model (arXiv:1306.5084)

- simulate known & observed backgrounds
- fit combination of MC spectra to data in interval 570 keV 7500 keV
 - → relative contribution of backgrounds
- tested several comb. of position & contrib.
 - → no unique determination

close background sources dominate: 42 Ar, 228 Th & 226 Ra in holder, α on detector surface,

background model @ $Q_{\beta\beta}$

No line expected in the blinded window

background flat between 1930-2190 keV (without 2104±5 keV, without 2119±5 keV),

expect << 1 event in other weak ²¹⁴Bi lines (e.g. 2017, 2053 keV)

partial unblinding (grey window) after fixing of calibration & bkg model, no line in grey interval, expected 8.6-10.3 evts in grey part & see 13 events

energy (keV)

background model in small binning

"minimal model": fit to "golden coax" data Nov 2011 – March 2013 (= 15.4 kg yr) with 30 keV bins here: scale the fit to total "golden coax" exposure of 17.9 kg yr and compare to physics data of entire period

background model in small binning

950 bins in total:

3 bins outside red (>99.9%) bands 37 bins outside yellow (>95%) bands 200 bins outside green (>68%) bands

no hint for additional (strong) peaks

Note: bands are for integer valued intervals of the model with coverage at least as large as indicated → over-coverage especially for the green band & low counts

Pulse shape discrimination (arXiv:1307.2610)

 $0v\beta\beta$ events: range 1 MeV electrons in Ge ~1 mm

→ one drift of electrons & holes, single site event (SSE)

background from γ 's: range of MeV γ in Ge >10x larger

→ often sum of several electron/hole drifts, multi site events (MSE)

surface events: only electrons or holes drift

 \rightarrow pulse shape discrimination (PSD) to select $0\nu\beta\beta$ events

Charge and current signal for BEGe detectors (data events)

current signal = $q \cdot v \cdot \nabla \Phi$ q= charge, v = velocity (Shockley-Ramo theorem)

PSD for BEGe

Develop the PSD method with calibration data and then apply it to physics data double escape peak (DEP) events of 2615 keV γ in ²²⁸Th spectrum are (mainly) SSE \rightarrow proxy for $0\nu\beta\beta$

A/E = max. of current pulse "A" / energy "E" is robust & simple & well understood accept events 0.965 < A/E < 1.07 (normalization A/E for DEP events = 1)

A/E versus E for physics data

spectrum before (grey) & after (blue) cut

 $0\nu\beta\beta$ efficiency = 92±2 % determined from DEP efficiency & simulation $2\nu\beta\beta$ efficiency = 91±5 % in good agreement to DEP efficiency reject >80% of background events

PSD for semi-coaxial: neural network

Input: time when charge signal reaches 1%, 3%, ..., 99% of maximum

tested many methods implemented in TMVA, selected artificial neural network TMIpANN

select ANN cut position @ DEP survival = 90%

cross checks:

 $2\nu\beta\beta$ eff. = 85±2 %,

2.6 MeV γ Compton edge eff. = 85-94%,

⁵⁶Co DEP (1576 keV) eff. = 83%-95%

⁵⁶Co DEP (2231 keV) eff. = 83%-93%

 $0 \nu \beta \beta$ efficiency = $0.90^{+0.05}_{-0.09}$

GERDA .

PSD for semi-coaxial

overlap rejected physics events by 3 methods

cross check ANN classification with 2 other methods:

- 1) projective likelihood trained with Compton edge evt
- 2) "current pulse asymmetry * A/E"

90% of ANN rejected events also rejected by both, 3% only rejected by ANN

→ classification of background like events meaningful

Unblinding

(arXiv:1307.4720, in PRL)

2150

2200

energy [keV]

2100

evt cnt in ±5 keV	golden	silver	BEGe	total
expt. w/o PSD	3.3	0.8	1.0	5.1
obs. w/o PSD	5	1	1	7
expt. w/ PSD	2.0	0.4	0.1	2.5
obs w/ PSD	2	1	0	3

2000

1950

No peak in spectrum at $Q_{\beta\beta}$, event count consistent with bkg, \rightarrow GERDA sets a limit

Half life limit for 76 Ge $0v\beta\beta$

$$T_{1/2}^{0v} = \frac{\ln 2 \cdot N_A}{m_{\text{enr}} \cdot N^{0v}} M \cdot t \cdot f_{76} \cdot f_{\text{av}} \cdot \epsilon_{\text{fep}} \cdot \epsilon_{\text{psd}}$$

exposure averaged efficiencies

data set	M*t	f ₇₆	f _{av}	ϵ_{fep}	$\epsilon_{\sf psd}$
golden	17.9 kg yr	0.86	0.87	0.92	0.90
silver	1.3 kg yr	0.86	0.87	0.92	0.90
BEGe	2.4 kg yr	0.88	0.92	0.90	0.92

fit 3 data sets in 1930-2190 keV interval: constant (for bkg) + gauss (for signal),

4 parameters: 3x bkg level & 1/T⁰v $1/T^{0v} > 0$ constrain

fix gaussian μ =(2039.06±0.2) keV, $\sigma = (2.0\pm0.1)/(1.4\pm0.1)$ keV for coax/BEGe

systematic uncertainties on f, ϵ , μ , σ : Monte Carlo sampling & averaging

Frequentist: profile likelihood fit \rightarrow best fit N^{0v}=0, $T_{1/2}^{0v} > 2.1 \cdot 10^{25} \,\mathrm{yr}$ (90% C.L.) (sensitivity = 2.4 10²⁵ yr)

Bayes: flat 1/T prior 0 - 10^{-24} yr \rightarrow best fit N^{0v}=0, $T_{1/2}^{0v} > 1.9 \cdot 10^{25}$ yr (90% C.I.) (sensitivity = 2.0 10²⁵ yr)

adding HdM ^[1] & IGEX[2] spectra to profile likelihood fit $\rightarrow T_{1/2}^{0v} > 3.0 \cdot 10^{25} \text{ yr}$ (90% C.L.) for ⁷⁶Ge

Assuming the claimed signal [3] GERDA should see 5.9±1.4 $0v\beta\beta$ events in ±2 σ interval above bkg = 2.0±0.3,

- → probability $p(N^{0v}=0 \mid H_1=signal+bkg) = 1\%$, claim ruled out @ 99%
- → Bayes factor H_1 (=signal+bkg) / H_0 (=bkg only) = 0.024

combing with EXO-200 & Kamland-Zen using weakest exclusion (= smallest NME ratio 136 Xe/ 76 Ge ~ 0.4) gives total Bayes factor $H_1/H_0 = 0.0022 \rightarrow \text{claim of } ^{76}\text{Ge signal is strongly disfavored}$

[1] Euro Phys J A12 (2001) 147. [2] Phys Rev D65 (2002) 092007. [3] $T_{1/2}(^{76}Ge)=1.19\times10^{25}$ yr, Phys Lett B586 (2004) 198.

TAUP 2013 GERDA result 16

What value of Klapdor-Kleingrothaus to compare with?

a) 2004 publications: [1] NIM A522 371 & [2] Phys Lett B586 198

entire data set [1.2]: 71.7 kg·yr (active mass) 28.75 ± 6.86 signal events

$$T_{1/2}^{0\nu} = (1.19_{-0.23}^{+0.37}) \cdot 10^{25} \,\text{yr}$$
 (our reference)

data for PSD analysis [1,2] 51.4 kg·yr 19.58 ± 5.41 signal events (total) $T_{1/2}^{0v} = (1.25_{-0.27}^{+0.49}) \cdot 10^{25} \text{yr}$

with PSD: 12.36 ± 3.72 evt Without efficiency correction $T_{1/2}^{0v} = 1.98 \cdot 10^{25} \text{ yr}$

DEP survival fraction [1] ~ 62% $T_{1/2}^{0v} = 1.23 \cdot 10^{25} \,\mathrm{yr}$ (my calculation)

No efficiency correction is applied in any publication!

using given eff., $T_{1/2}^{0v}$ after PSD agrees with 1.19 10²⁵ yr

error on signal count not correct since smaller than Poisson error

PSD based on 3 previous methods
(2 neural networks + pulse boardness)
& library of SSE pulses:
Event accepted IF pulse in library OR
found by neural network of Ref. 16 but
not by the other two neural networks

NO event overlap between the 2 sets!?

statement of publication:

- "multi site events are suppressed by 100%",
- $-0\nu\beta\beta$ PSD efficiency = 1 used for $T_{1/2}^{0\nu}$

efficiency factor not considered

- \rightarrow calculation of $T_{1/2}^{0v}$ not correct
- → GERDA does not use this result

Peak position shifted by -1.6 keV, why? "seem to be due to ballistic deficit" of SSE [3].

- a) effect should have opposite sign and b) should also apply to DEP (not discussed)
- → interpretation that peak @ 2039 keV is sum of 2 lines (DARK 2007 proc.) not supported by any argument
- → reduced count in line is due to efficiency of PSD

for discussion see also: Annalen d Phys 525 (2013) 269. J High Energy Phys 02 (2013) 093.

Summary

- GERDA has accumulated 21.6 kg yr of data,
 BI ~ 0.01 cts/(keV kg yr) after PSD
- GERDA has performed a blind analysis (first time in this field)
- Observe 3 events in $Q_{\beta\beta}\pm 5$ keV with expected bkg of 2.5 ± 0.3 \rightarrow no signal
- Profile likelihood fit $T_{1/2}^{0v} > 2.1 \cdot 10^{25} \, \text{yr} (90\% \, \text{C.L.})$ for ⁷⁶Ge

The claimed signal (without PSD) is ruled out by GERDA at 99% (without any model dependence)

 $T_{1/2}^{0\nu}$ (central value & error) of the KK analysis with PSD is not correct

backup

Table 1: List of all events within $Q_{\beta\beta} \pm 5 \text{ keV}$

				-			
data set	detector	energy	date	PSD	ANN	A/E	Cut Threshold
		[keV]		passed			
golden	ANG 5	2041.8	18-Nov-2011 22:52	no	0.344		0.366
silver	ANG 5	2036.9	23-Jun-2012 23:02	yes	0.518		0.366
golden	RG 2	2041.3	16-Dec-2012 00:09	yes	0.682		0.364
BEGe	GD32B	2036.6	$28\text{-Dec-}2012\ 09:50$	no		0.750	$0.965 \div 1.070$
golden	RG 1	2035.5	29-Jan-2013 03:35	yes	0.713		0.372
golden	ANG 3	2037.4	$02\text{-Mar-}2013\ 08:08$	no	0.205		0.345
golden	RG 1	2041.7	27-Apr-2013 22:21	no	0.369		0.372

